Exoplanet searches with gravitational microlensing

A.F. Zakharov¹,², S. Calchi Novati³, F. De Paolis⁴, G. Ingrosso⁴, Ph. Jetzer⁵, and A. A. Nucita⁶

¹ Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya, 25, 117259, Moscow, Russia, e-mail: zakharov@itep.ru
² Bogoliubov Laboratory for Theoretical Physics, JINR, 141980 Dubna, Russia
³ Dipartimento di Fisica, Università di Salerno, I-84081 Baronissi (SA) and INFN Sezione di Napoli, Italy
⁴ Dipartimento di Fisica, Università del Salento and INFN Sezione di Lecce, CP 193, I-73100 Lecce, Italy
⁵ Institute for Theoretical Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
⁶ XMM-Newton Science Operations Centre, ESAC, ESA, 28080 Madrid, Spain

Abstract. Different regimes of gravitational lensing depend on lens masses and roughly correspond to angular distance between images. If a gravitational lens has a typical stellar mass, this regime is named microlensing because the typical angular distance between images is about microarcseconds in the case for sources and lenses at cosmological distances. The angular distance depends on as a squared root of lens mass and therefore, for Earth-like planet mass lens (10⁻⁶ M☉), such a regime is called nanolensing. So, one can name searches for exoplanets with gravitational lens method as gravitational nanolensing. There are different methods for finding exoplanets such as radial spectral shifts, astrometrical measurements, transits, timing etc. Gravitational microlensing (including pixel-lensing) is among the most promising techniques with the potentiality of detecting Earth-like planets at distances about a few astronomical units from their host star.

Key words. Gravitational lensing – Microlensing techniques (astronomy) – Extrasolar planets – Substellar companions; planets – Gravitational lenses and luminous arcs

1. Introduction

Gravitational lensing is based on the simple physical phenomenon that light trajectories are bent in a gravitational field. In some sense a gravitating body attracts photons. For the first time this fact was discussed by Newton (1704), but the first derivation of the light bending angle in the framework of Newtonian gravity was published by Soldner (1804). Using the weak gravitational field approximation in General Relativity (GR) the correct bending angle is de-
scribed by the following expression (Einstein 1916)
\[\delta \varphi = \frac{4GM}{c^2 p} \]
(1)
where \(M \), \(p \) and \(G \) are the gravitating body mass, the impact parameter, the speed of light and the Newton constant, respectively. If \(M = M_\odot \) and \(p = R_\odot \), the Solar mass and radius, the bending angle is equal to 1.75 arcsec. In 1919 this value was firstly confirmed by the observations of light rays bending by the Solar gravitational field near its surface (Dyson, Eddington & Davidson 1920).

Using Eq. (1) one can introduce the gravitational lens equation
\[\eta = D_s \xi / D_d - D_{ds} \Theta (\xi), \]
(2)
where \(D_s \), \(D_d \) and \(D_{ds} \) are the source – observer, lens – observer and source – lens distances. Here \(\eta \) and \(\xi \) define coordinates in source and lens planes, respectively, and
\[\Theta (\xi) = 4GM\xi / c^2 \xi^2. \]
(3)
Taking the right hand side of Eq. (2) to be zero (\(\eta = 0 \)) and substituting \(\Theta \) from Eq. (3), one obtains the so-called Einstein–Chwolson radius (Schneider, Ehlers & Falco 1992)
\[\xi_0 = \sqrt[4]{4GM_D D_s} / (c^2 D_d) \] and, correspondingly, the Einstein–Chwolson angle \(\theta_0 = \xi_0 / D_d \). If \(D_s \gg D_d \), we have
\[\theta_0 \approx 2'' \times 10^{-3} \left(\frac{M}{M_\odot} \right)^{1/2} \left(\frac{\text{kpc}}{D_d} \right)^{-1/2}. \]
(4)

1.1. Regimes of gravitational lensing

There is a number of reviews and books on gravitational lensing (Schneider, Ehlers & Falco 1992; Wambsganss 1993;Refsdal & Surdej 1994; Zakharov 1997b; Roulet & Mollerach 2002; Claeskens & Surdej 2002). Gravitational lensing in the strong gravitational field approximation was also analyzed

1 Chwolson (1924) described circular images and Einstein (1936) obtained basic expressions for gravitational lensing. However, it was found (Keen et al. 1997) that Einstein analyzed gravitational lensing phenomenon in his unpublished notes in 1912.

Table 1. Different regimes of gravitational lensing (Wambsganss 1993).

<table>
<thead>
<tr>
<th>Prefix/name</th>
<th>Deflection Mass Lens angle (arcsecond)</th>
<th>Mass (m / M_\odot)</th>
<th>Lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilo-lensing</td>
<td>10''</td>
<td>10''</td>
<td>galaxy</td>
</tr>
<tr>
<td>milli-lensing</td>
<td>10^{-3}</td>
<td>10''</td>
<td>MBH</td>
</tr>
<tr>
<td>micro-lensing</td>
<td>10^{-6}</td>
<td>10''</td>
<td>star</td>
</tr>
<tr>
<td>nano-lensing</td>
<td>10^{-9}</td>
<td>10^{-6}</td>
<td>planet</td>
</tr>
<tr>
<td>pico-lensing</td>
<td>10^{-12}</td>
<td>10^{-12}</td>
<td></td>
</tr>
<tr>
<td>femto-lensing</td>
<td>10^{-15}</td>
<td>10^{-15}</td>
<td>comet</td>
</tr>
</tbody>
</table>

As it is shown below, in the framework of the simplest point-like lens model (the Schwarzschild lens) angular distances between images are about 2\(\theta_0 \) and it is proportional to the square root of the lens mass, for fixed other parameters. So, if the gravitational lens has a typical galactic mass of about 10^{12} \(M_\odot \), the distance between images is about a few arcseconds (the standard gravitational macro-lensing regime); if the gravitational lens mass is about a solar mass \(M_\odot \), the typical distance between images is about 10^{-3} \(M_\odot \), the distance between images is about a few arcseconds (the gravitational microlensing regime); if the gravitational lens has a typical Earth-like planet mass of about 10^{-6} \(M_\odot \), the distance between images is about 10^{-9} arcseconds (the gravitational nanolensing regime) (see also Wambsganss 1993; Zakharov 2009; Zackrisson & Riehm 2009). Actually, 10^{-9} arcseconds is a very small angle and to imagine it one can try to take a look at one inch coin from the distance of about 4.5 \times 10^5 km (or about 30 AU, which is roughly equal to the distance between Sun and Neptune).

Naturally, at the moment there is no way to resolve micro and nano images but there is a way to discover photometrical features of the phenomena by monitoring light curves of background sources (Byalko 1970). Moreover, there are projects planning to reach angular resolutions at the microarcsecond level (in different spectral bands) such as NASA Space Interferometry Mission (SIM), ESA Global...
If the gravitational lens is one of the closest galaxies at distance $D_d = 100$ kpc with mass $M = 10^{12} M_\odot$, we have $\theta_0 \approx 200''$. If the gravitational lens is a star in our Galaxy at distance 1 kpc, we have $M = M_\odot$, and $\theta_0 \approx 2'' \times 10^{-3}$. Similar, if the lens is a planet at the same distance with mass about $M = 10^{-6} M_\odot$, then $\theta_0 \approx (2 \times 10^{-6})''$. According to a standard terminology proposed many years ago, if the lens mass is about $M \sim M_\odot$ ($M \sim 10^{-6} M_\odot$) we call this lensing regime as microlensing (nanolensing) independently on locations of sources and lenses. More generally speaking, searches for planets through their impacts on gravitational lensing may be named as gravitational nanolensing.

We can introduce dimensionless variables

$$x = \xi/\xi_0, \quad y = D_s \eta/(\xi_0 D_d), \quad \alpha = \Theta D_d D_s/\xi_0,$$

and we write the gravitational lens equation in dimensionless form:

$$y = x - \alpha(x) \quad \text{or} \quad y = x - x^2.$$

The gravitational lens effect may lead to the formation of several images instead of one (see, for instance, Schneider, Ehlers & Falco 1992, Zakharov 1997b). We have two images (or one ring) for the Schwarzschild point lens model, as one can see in Fig. 1. The total area of the two images is larger than the source area. The ratio between the sum of these two image areas and the source area is called gravitational lens amplification A and it is a result of gravitational focusing. For example, if a circular source with radius r (and area πr^2) is located near the position of a gravitational lens on the celestial sphere, then the ring image area is equal to $2\pi r$ (the width of the ring is r and its circumference is 2π for the unit circle since we express all distances in Einstein–Chwolson radius units) and therefore, the magnification is $2/r$. Thus one could calculate the asymptote for the magnification in the limit $r \to 0$. That is the reason to name gravitational lensing as gravitational focusing.

As one can see, the angular distance between two images is about the angular size of the so-called Einstein–Chwolson cone with

\[2\text{arcsec} = 2\times10^{-3}\text{arcsec} = 2\times10^{-3}\times\text{rad} \approx 1\times10^{-5}\text{rad} \approx 1\times10^{-5}\times180^\circ \approx 1^\circ.\]
the angle $2\theta_0$ (it corresponds to the Einstein – Chwolson diameter).

2. Gravitational microlensing

There is a number of reviews on gravitational lensing (Wu 1994, Paczynski 1996, Roulet & Mollerach 1997, Zakharov & Sazhin 1998, Roulet & Mollerach 2002, Mao 1999, Jetzer 1999, Zakharov 2003, 2005, Mao 2008, Zakharov 2008b). If a source S lies on the boundary of the Einstein – Chwolson cone, then the amplification $A = 1.34$. The microlensing time T_0 is defined usually as a half of the total time of crossing the cone:

$$T_0 = 3.5 \text{ months} \cdot \sqrt{\frac{M}{M_\odot}} \cdot \frac{D_d}{10 \text{kpc}} \cdot \frac{300 \text{ km/s}}{V_\perp},$$

where V_\perp is the transverse velocity component of the lens. If we suppose $V_\perp \approx 300 \text{ km/s}$ (that is the typical stellar velocity in the Galaxy), then the typical crossing time of the Einstein cone is about 3.5 months. Thus, the luminosity of a source S is changing within this time. We will give numerical estimates for parameters of the microlensing phenomenon. If the distance between the lens and the Sun is about 10 kpc, then the angular size of Einstein cone is equal to ~ 0.001" and it corresponds to a linear size of about 10 AU. It is clear that since the angular distance between the images is very small, it is very difficult to resolve them by using ground based telescopes, at least in an optical band. Einstein noted that if gravitational lenses and sources are stars, the gravitational lens phenomenon hardly could ever be detectable, since the separation angle between images is very small (Einstein 1936). However, recently, a direct method to measure the Einstein angle $2\theta_0$ was proposed by resolving the double images generated by microlensing. To solve this problem, Delplancke, Gorski & Richichi (2001) proposed to use an optical interferometer (say, Very Large Telescope Interferometer (VLTII)). Moreover, it was planned to launch astrometrical space probes, such as US SIM (see also Lindegren & Perryman 1996, Perryman et al. 2001, Perryman, de Bruijne & Lammers 2008).
a gravitational lens field or an extended source then some deviations of symmetric light curves may be observed and (or) the microlensing effect may be chromatic (Zakharov 1997b).

Many years ago it was found that density of visible matter is about a few % of total matter density in galactic halos (Oort 1932, Zwicky 1933) and the invisible component is called dark matter (DM). It is now known that the matter density (in critical density units) is $\Omega_m = 0.3$ (including baryonic matter $\Omega_b \approx 0.05$–0.04, but luminous matter $\Omega_{lum} \leq 0.005$), Λ-term density $\Omega_\Lambda = 0.7$ (Komatsu et al. 2009, Astier et al. 2006, Zakharov et al. 2009). Thus, baryonic density is a small fraction of total density of the Universe. Probably galactic halos are "natural" places to store not only baryonic DM, but non-baryonic DM as well. If DM forms objects with masses in the range 10^{-3}–$10^{-5} M_\odot$, microlensing could help to detect such objects. Thus, before intensive microlensing searches it was a dream that microlensing investigations could help us to solve DM problem for Galactic halo at least.

As it was mentioned before, a possibility to discover microlensing by monitoring background stars for the first time was proposed by Byalko (1970) (however, to increase a probability in the original paper it was proposed to detect very faint flashes for the background star light curves and in this form the idea is hardly ever realizable). Systematic searches of dark matter using typical variations of light curves of individual stars from millions observable stars started after Paczynski’s discussion of the halo dark matter discovery using monitoring stars from Large Magellanic Cloud (LMC) (Paczynski 1986). At the beginning of the nineties new computer and technical facilities providing the storage and processing capabilities for the huge volume of observational data appeared and enabled the rapid realization of Paczynski’s proposal (the situation was different in time of Byalko’s paper). Griest (1991) suggested to call the microlenses as Machos (Massive Astrophysical Compact Halo Objects). Besides, MACHO is the name of the US–English–Australian collaboration project which observed the LMC and Galactic bulge using 1.3 m telescope of Mount Stromlo observatory in Australia. Since one can monitor several million stars for several years by the microlens searches, the ongoing searches have focused on two targets: a) stars in the Large and Small Magellanic Clouds (LMC and SMC) which are the nearest galaxies having lines of sight which go out of the Galactic plane and well across the halo; b) stars in the Galactic bulge which allow us to test the distribution of lenses near the Galactic plane. The first papers about the microlensing discovery were published by the MACHO collaboration (Alcock et al. 1993) and the French collaboration EROS (Expérience de Recherche d’Objets Sombres) (Aubourg et al. 1993).

First papers about the microlensing discovery toward Galactic bulge were published by the US–Polish Optical Gravitational Lens Experiment (OGLE) collaboration, which used 1.3 m telescope at Las Campanas Observatory. Since June 2001, after second major hardware upgrade OGLE entered into its third phase, OGLE III and as a result the collaboration observed more than 200 million stars regularly once every 1 – 3 nights. During last years OGLE III detected several hundred microlensing event candidates each year (Udalski A. et al. 2003, Udalski et al. 2005). The OGLE-III phase has ended on May 3rd, 2009. During the previous observing seasons the Early Warning System (EWS) of OGLE-III discovered a number of microlensing event candidates (see Table 2).

MOA (Microlensing Observations in Astrophysics) is collaboration involving astronomers from Japan and New Zealand (Bond et al. 2001). To investigate Macho distribution in another direction one could use searches toward M31 (Andromeda) Galaxy lying at 725 kpc, which is the closest galaxy for an observer in the Northern hemisphere (Crofts 2006). MACHO stopped since the end of 1999. EROS experiment stopped in 2002 (Moniez 2001).

http://www.astrouw.edu.pl/ogle/ogle3/ews/ews/html. OGLE collaboration plans to start the phase OGLE IV.

http://www.roe.ac.uk/%7Eiab/alert/alert/alert/html.
Table 2. Microlensing event candidates discovered in the observational campaign of OGLE-III.

<table>
<thead>
<tr>
<th>Year of observations</th>
<th>Number of event candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>about 350</td>
</tr>
<tr>
<td>2003</td>
<td>about 450</td>
</tr>
<tr>
<td>2004</td>
<td>about 600</td>
</tr>
<tr>
<td>2005</td>
<td>about 550</td>
</tr>
<tr>
<td>2006</td>
<td>about 600</td>
</tr>
<tr>
<td>2007</td>
<td>about 600</td>
</tr>
<tr>
<td>2008</td>
<td>about 650</td>
</tr>
</tbody>
</table>

The optical depth towards the Galactic bulge is equal to $\sim 3 \times 10^{-6}$, so it is larger than the initially estimated value ($Alcock et al. 2000a$), so that there is an additional feature for a bar like structure for the Galactic bulge.

5.7 years analysis of photometry of 11.9 million stars in LMC by MACHO collaboration revealed 13 – 17 microlensing events ($Alcock et al. 2000b$). The optical depth towards the LMC is equal to $\tau(2 < \hat{i} < 400 \text{ days}) = 1.2 \pm 0.3 \times 10^{-7}$, so, it is smaller than the initially estimated value based on the assumption that the halo dark matter is concentrated in Machos. The maximum likelihood now considered as the evidence of a stellar variability ($Paczynski 1996$).
analysis gives a Macho halo fraction \(f = 0.2 \). Estimates of the following probabilities \(P(0.08 < f < 0.5) = 0.95 \) and \(P(f = 1) < 0.05 \) are given. The most likely Macho mass \(M = 0.15 - 0.9 M_{\odot} \), depending on the halo model and total mass in Machos out 50 kpc is found to be \(9^{+4}_{-3} \times 10^{10} M_{\odot} \). EROS collaboration gives a consistent conclusion. Namely, this group estimates the following probability \(P(M \in [10^{-7}, 1] M_{\odot} \& f > 0.4) < 0.05 \) \(\text{(Lasserre et al. 2000 \& Lasserre 2000)} \). Recently this collaboration concluded that the optical depth toward LMC is \(\tau < 0.36 \times 10^{-7} \) (with 95\% confidence level) which means that Macho contribution to halo mass is less than 7\% \(\text{(Tisserand et al. 2007)} \). On the other hand, OGLE collaboration claims that the fraction of mass of compact dark matter objects in the Galactic halo could be \(8 \pm 6\% \) \(\text{(Wyrzykowski et al. 2009)} \). Their results indicate a non-detection of Machos lensing towards the LMC with an upper limit for their abundance in the Galactic halo of 19\% for \(M = 0.4 M_{\odot} \) and 10\% for masses between 0.01 and 0.2 \(M_{\odot} \) \(\text{(Wyrzykowski et al. 2009)} \). However, these conclusions are based on assumptions about mass and spacial distributions of microlenses but such distributions are not known very well. In principle, microlensing searches are realistic ways to improve our knowledge, but for that aim we would need thousands of events.

When new observational data would be collected and the processing methods would be perfected, probably some microlensing event candidates would loose their status, but perhaps new microlensing event candidates would be extracted among analyzed observational data. Thus, the following general conclusion may be made: the very important astronomical phenomenon was discovered, but some quantitative parameters of microlensing will be specified in future. However, the problem about a content of 80\% (or even 93\% according to EROS point of view) of DM in the halo of our Galaxy is still open (before microlensing search the people hoped that it could give an answer for this problem). Thus, describing the present status Kerins wrote adequately that now we have "Machos and clouds of uncertainty" \(\text{(Kerins 2001)} \). It means that there is a wide field for studies, in particular, pixel microlensing, microlensing of gravitationally lensed systems and extrasolar planet searches seem to be the most promising issues.

3. Methods for exoplanet searches

Already in 1991 Mao & Paczynski evaluated the probability to find a planet among microlensing events and they noted that with massive searches toward the Galactic bulge the first exoplanet should have been discovered. In spite of the fact that the first planetary system was found around the millisecond pulsar PSR1257+12 \(\text{(Wolszczan \& Frail 1992)} \), the prediction by Mao and Paczynski was almost correct and nowadays we know that microlensing is rather efficient method for exoplanet searches.

At the moment one of the most fruitful technique to find exoplanets is based on measurements of radial velocities with the spectrograph High Accuracy Radial velocity Planet Searcher (HARPS). These facilities are installed at the ESO 3.6 m telescope at La Silla Observatory. A typical uncertainty is about 1 m/s with a full range in the 0.7 – 2 m/s interval depending on weather conditions \(\text{(Mayor et al. 2009b)} \). A summary for radial velocities searches is given in Table 1 by Perryman et al. \(\text{(2005)} \). At the moment more than 300 planets were discovered by this method.

About 60 planets were discovered by transit method \(\text{(Konacki et al. 2003)} \) (see also Table 2 in Perryman et al. \(\text{(2005)} \)), where ground and space facilities are listed. The recent launch of Kepler mission significantly increases expectations to find new interesting objects with the transit technique. We remind that the diameter of Kepler mirror is more than 3 times larger than the diameter of the CONvection ROTation and planetary Transits (CoRoT) telescope mirror and the field of view of Kepler is more than 100 times larger. CoRoT discovered very interesting planetary systems such as CoRoT-7b which radius is about 2 Earth radius \(\text{(Leger et al. 2009)} \). Further observations with HARPS showed that there are two Earth like planets in the system with masses
4.8 ± 0.8M⊕ (CoRoT-7b) and 8.4 ± 0.9M⊕ (CoRoT-7c) [Queloz et al., 2009].

According to J. Schneider database[12] four planetary systems (with 7 planets and 2 multiple planet systems) are found by timing technique.

At the moment, only one exoplanet has been found by astrometrical measurements (see Jet Propulsion Laboratory press release on May, 28, 2009), but there is a hope that future missions such James Webb Space Telescope (JWST), SIM, Gaia will provide excellent facilities to discover a large number of planetary systems with astrometrical measurements.

An important aspect of exoplanet searches is the opportunity to use different methods to verify conclusions about planetary system existence made with only one technique. For example, radial velocity measurements and transits or (and) astrometrical measurements may be complementary (see for instance, observations of extrasolar planet Gliese 876b with the Hubble Space Telescope and high precision radial velocity measurements).

Much more information about different methods to find exoplanets is given by Perryman (2000), Perryman et al. (2003), Udry & Santos (2007), Santos (2008), Johnson (2009).

<table>
<thead>
<tr>
<th>Star Mass</th>
<th>Planet Mass</th>
<th>Semi-major Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63^{+0.04}{-0.02}M⊙</td>
<td>830^{+66}_{-56}M⊕</td>
<td>4.3^{+0.2}_{-0.1} AU</td>
</tr>
<tr>
<td>(0.46 ± 0.04)M_⊙</td>
<td>(1100 ± 100)M⊕</td>
<td>(4.4 ± 1.8) AU</td>
</tr>
<tr>
<td>0.22^{+0.11}{-0.05}M⊙</td>
<td>5.5^{+0.7}_{-0.8}M⊕</td>
<td>2.6^{+0.4}_{-0.5} AU</td>
</tr>
<tr>
<td>0.49^{+0.14}{-0.10}M⊙</td>
<td>13^{+9}_{-7}M⊕</td>
<td>3.2^{+1}_{-0.6} AU</td>
</tr>
<tr>
<td>(0.50 ± 0.04)M_⊙</td>
<td>(226 ± 25)M⊕</td>
<td>(2.3 ± 0.2) AU</td>
</tr>
<tr>
<td>(0.50 ± 0.04)M_⊙</td>
<td>(86 ± 10)M⊕</td>
<td>(4.6 ± 0.5) AU</td>
</tr>
<tr>
<td>0.060^{+0.015}{-0.012}M⊙</td>
<td>3.3^{+0.5}_{-0.4}M⊕</td>
<td>0.62^{+0.14}_{-0.20} AU</td>
</tr>
<tr>
<td>0.30^{+0.15}{-0.12}M⊙</td>
<td>260.54^{+105.72}_{-104.85}M⊕</td>
<td>0.72^{+0.30}_{-0.26} AU</td>
</tr>
</tbody>
</table>

or 6.5^{+1.7}_{-1.2} AU

4. Exoplanet searches with gravitational microlensing

Since the existence of planets around lens stars leads to the violation of circular symmetry of lens system and, as a result, to the formation of fold and cusp type caustics (Schneider, Ehlers & Falco [1992], Zakharov [1995, 1997]), one can detect extra peaks in the microlensing light curve due to caustic crossing by the star source as a result of its proper motion.

As it was noted above, Mao & Paczynski (1991) pointed out that the probability to discover planetary systems by microlensing is rather high (see also Gould & Loeb [1992]).

Bolatto & Falco [1994]. These conclusions were confirmed by further observations.

A list of exoplanets detected with microlensing searches toward the Galactic bulge is given in Table 3 (Bennett [2009], Bennett et al. [2008a], Dong et al. [2009]). For the last planetary system two probable regions for the planet-to-star distance are given due to the planet and star-lens parameter degeneracy (Dominik [1999], Bennett [2009]). Reports about these discoveries were described by Bond et al. (2004), Udalski et al. (2005), Beaulieu et al. (2006), Gould et al. (2006), Gaudi et al. (2008), Bennett [2009], Bennett et al. (2008a), Dong et al. (2009). It is remarkable that the first exoplanet was discovered by the MOA-1 collaboration with only a 0.6 m telescope (Bond et al. [2004], Bennett [2009]). This microlensing event was also detected by the OGLE collaboration, but the MOA observations with a larger field of view CCD, made about 5 exposures per night for each of their fields. This was an important advantage and shows that even observations with modest facilities may give a crucial contribution.

Until now five giant exoplanets and three super-Earth exoplanets (with masses about 10M⊕) have been discovered by microlensing.

[12] See web-site http://exoplanet.eu (developing by J. Schneider). At the moment more than 400 exoplanets have been discovered in total.
(see Table 3), showing that this technique is very efficient in detecting Earth mass exoplanets at a few AU from their host star.

Among the most important exoplanet discoveries by microlensing (Abe et al. 2004) we mention 5.5 Earth mass planet (it was the lightest one for some time). It means that the existence of cool rocky planets is a common phenomenon in the Universe (Beaulieu et al. 2006, Dominik, Horne, Boden 2006).

Pixel-lensing towards M31 may provide an efficient tool to search for exoplanets in that galaxy (Chung et al. 2006, Kim et al. 2007, Ingrosso et al. 2009), and indeed an exoplanet might be already discovered in the PA-N2-99 event (An et al. 2004). A detailed discussion of the issue is far beyond the present article. However, since source stars for pixel-lensing towards M31 are basically red giants (and therefore, their typical diameters are comparable to Einstein diameters and the caustic sizes) one has to take into account the source finiteness effect, similarly to microlensing in quasars (Agol & Krolik 1999, Popovic et al. 2006, Jovanović et al. 2008). As it is well known (Witt & Mao 1994, Bogdanov & Cherepashchuk 1995, 1999, Domínek 2005, Heyrovsky 2007, Fejcha & Heyrovsky 2009), the amplifications for a finite source and for a point-like source are different. If the source size is rather small, the probability to produce features of binary lens (or planet around star) is proportional to the caustic area. However, giant stars have large angular sizes and relatively higher probability to touch planetary caustics (see Ingrosso et al. 2009, for details).

5. Conclusions

Around a dozen Earth exoplanets with masses in the range 1 – 10M⊕ have been discovered using different techniques (Rivera et al. 2005).

One can see that a fraction of super-Earth exoplanets detected with microlensing technique is rather high in comparison with a fraction of all exoplanets. Searches for low mass exoplanets are connected with searches for life in the Universe. Positions of exoplanets in habitable zones (Kasting et al. 1993, Jones et al. 2005, Lammer et al. 2009) were studied with different techniques including dynamical analysis of multi-planetary systems (Ji et al. 2003, 2005, 2007, 2009, Fisher et al. 2008, Pilat-Lohinger et al. 2008, Pilat-Lohinger 2009, McNeil & Nelson 2009, Wright 2009, Wright et al. 2009). Clearly, from this point of view the most interesting and exciting planetary systems have masses around the Earth mass and distances between planets and main sequence star have to be about AU. Gravitational microlensing is a very efficient method for discovering such planetary systems. In this context Microlensing Planet Finder (MPF) mission may be very fruitful and comparable with other space missions for exoplanet searches (see Fig. 2 in Bennett et al. 2008b and Fig. 1.9 in Bennett 2009).

For distant planetary systems discovered with microlensing, an usage of complementary methods may be rather difficult (at least at the moment) because they could not be sensitive for such planetary systems. However, a potential direct observations of star (for instance with a space telescope) in a planetary system (Bennett et al. 2006) may be very useful to reduce uncertainties in determination of planetary system parameters.

Acknowledgements. AFZ is grateful to prof. E. Danézis and Dr. E. Lyraiz for their kind attention to this contribution and the hospitality in Greece during the First International Workshop "Astrophysical winds and disks - Similar phenomena in stars and quasars".
References

Abe, F. et al., 2004, Science, 305, 1264
Alcock, C. et al., 1993 Nat., 365, 621
Aubourg E. et al., 1993, Nat., 365, 623
Bennett, D.P. et al., 2008b, A Census of Exoplanets in Orbits Beyond 0.5 AU via Space-based Microlensing, White Paper for the Astro2010 Science Frontier Panel.
Bozza, V. et al., 2001, GRG, 33, 1535
Chwolson, O., 1924, Astron. Nachrich. 221, 329
Dominik, M., Horne K., Bode M. F., 2006, Astron. & Geophys., 367, 3.25
Einstein, A., 1916, Ann. der Phys. 49, 769
Einstein, A., 1936, Science, 84, 506
Jetzer, Ph., 1999, Naturwissenschaften 86, 201
Zakharov: Exoplanet searches with gravitational microlensing

Khamitov, I.M. et al., 2006, Astron. Lett. 32, 514
Mayor, M. & Udry S., 2008, Physica Scripta, T130, 014010
Newton, I., 1704, Optics: or a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light (Royal Society, London)
Zakharov, A.F., 1997b, Gravitational Lenses and Microlenses (Moscow, Janus-K)
Zakharov, A.F., 2008b, Phys. Part. Nucl., 39, 1176
Zakharov, A.F., Sazhin M.V., 1996a, JETP Letters, 63, 937
Zakharov, A.F., Sazhin, M.V., 1996b, JETP, 83, 1057
Zwicky, F., 1933, Helvetica Physica Acta, 11, 110